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Motivation

This study was motivated by the outcome of the investigation of
Mader, Schaden, Zwanziger and Alkofer [EPJC(2014)74:2881]

@ Investigated the QEoM (DSE) of the gauge boson
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in various gauges and models with a BRST symmetry
(Lin./gen. covariant, maximal Abelian, non-covariant Coulomb, Gribov-Zwanziger)

@ Local current JZ(X) = ju(x) + s&(x) differs from conserved Noether
current j by a BRST-exact term (physically equivalent if BRST unbroken)

@ Expressed the Kugo-Ojima confinement criterion in terms of the saturation
of this equation at p — 0 (corollary to KO-criterion)

@ term which saturates rhs for p — 0 depends on phase of a gauge theory

Higgs phase: physical states contribute to transverse equation
Confining: saturation entirely due to unphysical dofs
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Motivation

Can we find / define similar on the lattice?
@ Yet unclear

@ DSE of a link variable in Landau gauge has never been considered before
(...moving onto new ground)

First steps (this talk)
@ Have to define the Gluon DSE on the lattice in terms of link variables,
i.e., the lattice analog of 6,,0%°5(x — y) = (A%(x )6Ab(y
e Fundamental degrees of freedom (dof.) are link variables

o Calculate KO-function u(p?) to see if it saturates /hs also on the lattice

@ Focus on Landau gauge and Wilson gauge action (pure YM theory)
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Gauge-fixing on the lattice
Landau gauge

o Gauge configurations U = {U;;} are generated using gauge-invariant
measure duw = D[U]eSW[U] (heatbath, HMC for unquenched, ...)

Gauge-fixing performed subsequently via iterative algorithm
(over-relaxation, Fourier-accelerated gauge-fixing, simulated-annealing, ...)

e Find a gauge-transformation U; — U,.Jg. = g,-U,-jng which minimizes the
Morse potential (gauge functional)

V[Ug] = — Z TI’Ui (i,j) = neighboring sites at (x,x%4)
ij

e Minima not unique: many different minima per U (Gribov copies)

All Gribov copies fulfill lattice Landau gauge (LLG) condition

0=1F"= EReZTr t°U; V(i,a), t° = —t'" = generator of SU(n)
j
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Variation of one link variable

Left variation 87

éﬁn Urs = thIm 6r/5sm - mltb 6rmésl + 91’ Urs - Urses j

left variation gauge transformation

o Left-variation of the link variable Upm: Upm — (1 + h)Unm, (h = h°t®)

o Infinitesimal gauge transformation 6; (returns configuration to LLG)

Alternative form

éﬁu Uy 1= t"Usp OyxByaoperp — Ult® 8y ernbyaone + 6y Uy — UpByso

where we identified (/, m) = (x,x+ i) and (r,s) = (y,y + D).
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Landau gauge condition and the Faddeev-Popov matrix

Variation leaves Landau Gauge condition fulfilled

0=28. " = Re Tr[t°t°Upmn(8i1 — im) + Z t°(0: Uy — Uj6))]
J

o {0;,i € A} are (anti-hermitian) traceless n x n matrices
o Ensure that the configuration remains in LLG
o Components of §; = S°_t05P

i;Im

solve the linear system

Z Mgcgﬁ;,fn = U (8i1 — Gim)

€

Faddeev-Popov (FP) matrix

MiP = U — 65 Y U with U = Uz := Re Tr t°t°U;
k
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The Faddeev-Popov trick

Functional

D[] = / [ ] dgie =¥

o Gauge-invariant by construction D;[U] = D;*[U¢]

@ For oo = oo (Landau gauge) reduces to sum over all low-lying Minima Uy
of U
DU =2 Y e VI (det M[UL]) 2
K

Inserting the unity
1= /Hdg,-e_av[ug]Da[U]

in the gauge-invariant lattice measure gives gauge-fixed model with the positive
measure
djie = D[U] D, [U] WU~V
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Vacuum expectation values

Expectation value of gauge-variant observable in Landau gauge

a—r0o0

(0) = lim /[U] DIU] Du[U] eWIU=aVIY o[y]

Sw is the Wilson gauge action (or any other)

@ V is the Morse potential (« is an inverse temperature a@ — o0)

D[U] is the Haar measure of SU(n) (invariant under variation)

D. is the gauge-invariant functional (— FP-trick)

Next, definition of gluon DSE in lattice Landau gauge YM theory
)

Remember in continuum: 6, 0°°6(x — y) = <AZ(X)W>
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The gluon Dyson-Schwinger equation on the lattice

Implicit form

a—r o0

0= lim / DIU] &, (D.[U] Sy,
[U]

Performing all variations: 0 = (8} Us) + <U,S o, (DQ[U] esW[U]_O‘V[U])>

Explicit form
-1 E : Z b /b b 5 /b
n (Tr U/m> (5rl55m - 5rm55/) = Re <K/fn Tr ta Ur5> + < f;lmursa — 0;’Imusra>
a ab
variation of U,s ~~
variation of 2" term gauge variation of Urs

@ (---) is understood as vev. over Landau-gauge fixed configurations

@ Note: We traced with t? and exploited global gauge invariance and that the
expectation values are real — “DSE of gluon field Ars = A, (y)"

A. Sternbeck (Uni Regensburg) 9 /17



The second term on the rhs (= longitudinal DSE)

Last term on the rhs of DSE in momentum space

n22; 1 <I\]I.4 Z e UX”> 6‘“’ =+ Z e*fP(X*Y) <0;§Hufi - G;fU;xuu;£>

ab,xy

v L;Lu(X*}/)

o As above: U35 := Re Tr t°t°U,,, and 0; is solution of

Jixp

Z MC052 = U (0ix — Sixspn) M = Faddeev-Popov matrix
o

Luv(x — y) is longitudinal

Gives 3=, ((D%c)?05g?) in the continuum limit

NOT the analog of the Kugo-Ojima correlator 3", (DY c)?(D}g)")
Longitudinal part of Kugo-Ojima correlator on the lattice (?)
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Longitudinal channel of gluon DSE in momentum space

o Longitudinal channel of DSE:

-1
2n

(V) 6w = Luw(p)
@ L, (x —y) in momentum space

Luw(P) = (80 — Ty ) L(p)

Lattice calculation

o Calculation of L, (p) via inversion of
FP matrix using plane-wave method

e SU(3) for B =6.0 on N* =24 32*

= Longitudinal DSE fulfilled

Reminder: transverse projector: T, := (5“,, -

Long. channel of gluon DSE

SU3): 8 =6.0

0.0

0.0 |

"7’#) By = 2sin (p,/2) and

P = 27k /Ny with ky, = (=N, /2 + 1, N, /2] € Z
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Transverse term of the gluon DSE

First term on the rhs of the DSE in momentum space

n—1

= (V)b =3 e PRy (KD Trt'Uy ) +
xy a

o Transverse and conserved: > Kj =0
e Continuum: Kj(x) = 0, F;,.(x) + ji(x)
= conserved color Noether current, j7, plus topologically conserved contribution

where K5, = 3, + &5, with

X5, = S)% Tr t*Usu Z Stapley v
1524

which results from the variation of the Wilson gauge action and the highly
non-trivial term &3, which is due to the variation of D,[U] eVl

3, = 2aZ@afa[U] +2aD,[ /zmTr[t U (1 — g, 18] D‘V[“g]Hdg»
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Variation of D, [U] e—aVIU

Remember
D;l[U] Qoo Z e—aV[Uk] (det M[Uk])_1/2
K
Taking a single (random) Gribov copy U the sum can be expressed by
DQI[U] oz, (det /\/I[U])*l/2 o—(atic)VIU]

e"*VIU is there because we expect the number of minima to grow exponentially

For @3, one then finds (in the limit & — 00)
), + da - Re Tr 7 Usy

where

- 52 (det M[U
o 1 M _ % Z M,;l bc(éi,x+ﬂ_6ix)%e Tr(tbtcéjx—tctbéj,x+ﬂ)taUXM

ij,be

T2 det MU

For the evaluation we use the stochastic noise technique for M ™!
(Gaussian noise)
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Transverse term of the gluon DSE

In momentum space the transverse channel of the DSE reads

2
n—1
—=5— (V) = T(p) + T*(p) + 6aD(p)
Deviation of T*(p) + T®(p) from Ihs of DSE is proportional to gluon
propagator
SU@B): B =6.0,32 SU@): =23 56
3 T T T T 2 T T T T
[ VTS _T% =y ] H VTS b e
const.- D +—e—f 1 [ const. - D +—=— 7
2 | -
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-
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Transverse channel of gluon DSE

Transverse DSE

2
n°—1
——— (V) =T (p)+ T*(p)+0aD(p) . su@: =50
0.0 £ % e =
e SU(3) for B =6.0 on N* =32 20 ‘ ‘ ‘
o Gluon propagator scaled with da eor 70 ]
4.0 + -
2.0 ~ -
= Transverse DSE fulfilled a b T o
2.0 - —
-4.0 -
6.0 528 1(_!;; :,
80 | ‘ ‘ —— ==
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Summary

@ Have derived (first time) the Dyson-Schwinger equation of a link variable
in lattice Landau gauge

n2

- L (T Unn) (5uBam—mba) = R S (K Tr 2 U)+ (AT AT

a ab
@ Longitudinal and transverse equation fully satisfied

@ For transverse equation have to

X . KO function (preliminary)
incorporate corrections due to an
insufficient sampling over Gribov 05
copies (o< gluon propagator) I 1
o First results for the KO-function %‘*:H
(see right figure) F R
@ Momentum dependence as Foap o, 02 | :5 ]
expected but the limit u(p2 —0) ai b e L ]
does not (yet?) satisfy /hs of DSE :
o L T T
a*p?
Gap at p = 0 a bug or feature? Will see! y
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Thank you for your attention!

o = - = LY
A. Sternbeck (Uni Regensburg)



